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Numerous studies [i, 2] have been devoted to the mathematical modeling of heat- and 
mass-transfer processes in composite materials. The thermomechanical disintegration of a 
composite laminate on the side of a solid of revolution under the influence of a specified 
heat flux was examined in [i]. In [2], investigators employed a coupled formulation to 
determine the interaction of a high-enthalpy flow with a hybrid composite composed of a 
porous solid of revolution and an impermeable cone. However, the mathematical model of 
heat- and mass-transfer (HMT) in [2] was written without allowance for the flow of heat 
between the cone and the porous body (Fig. i). Also, the calculated results in [2] for the 
porous part of the system were obtained in a one-temperature approximation. At the same 
time, it is known [3] that, in the general case, the temperatures of the gas and the con- 
densed phase (c-phase) in gas-permeable media are different. 

The authors of [4-6] presented an extensive bibliography of studies which have exam- 
ined the thermal state of porous cooling systems [7-9]. However, as was noted in [4], the 
results are not comparable - either as a result of appreciable arbitrariness or due to im- 
proper formulation of the boundary conditions. In the domestic and foreign literature [4, 
7, 9] devoted to mathematical modeling of HMT processes in a two-temperature medium, 
convective heat transfer is generally ignored in the energy conservation equation for the 
gas phase when the temperature field is being calculated. At the same time, when the 
latter was allowed for in [8], it was assumed that all of the heat flowing to the external 
boundary reached the surface of the skeleton (as it would in the case of a one-temperature 
medium), In addition, a mild boundary condition (a2T2/an2)l n=0 = 0) or the condition of 
thermal insulation) was posited for the gas. Study of the HMT characteristics for two 
types of gas-permeable media showed [i0] that balance (in the sense of conservation laws) 
boundary conditions are invariant to the thermophysical properties of a two-temperature 
porous medium. The range of application of mild boundary conditions was established in 

[i0]. 
The goal of the present study is to use a two-temperature model of a porous inert 

medium to examine the internal HMT mechanism for a shell composed of different materials. 
Mathematical experiments show that the following must be done to properly solve the 
problem: allow for the fact that the porous medium has two temperatures; use materials 
whose structural characteristics maximize the interphase heat-transfer coefficient; use a 
cermet as the thermal shield. 

I. Formulation of the Problem. To simplify the analysis, we will assume that: the 
medium has two temperatures, ie. the gas phase and the c-phase have different temperatures; 
the mass flow along a normal to the surface of the body in the main flow is considerably 
greater than the mass flow along the generatrix of the surface; the body is not destroyed 
by its interaction with the gas flow, and no heterogeneous or homogeneous chemical 
reactions or phase transformations take place on its surface or inside it; the density of 
the gas phase is determined from the equation of state of an ideal gas; the compositions 
of the injected gas and the gas in the incoming flow are the same; the heat flux on the 
heated outside of the conical part of the body is assigned in such a way that the tempera- 
ture of the surface of the cone by the end of thermal loading (t = to) is less than the 

melting point of the given material. 
The consumption of the gas-coolant will be determined from simultaneous solution of 

the continuity equation and the nonlinear Darcy's law [5, 6, 8]. The fact is that high 
mass velocities (flv) w (Re > I0) are associated with a tubulent filtration regime [6] 
characterized by a quadratic dependence of the pressure gradient on velocity. 
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The mathematical problem of calculating the HMT characteristics in natural coordi- 
nates reduces to the solution of the system of conservation equations 

O(p2qwrH)/Or~ = 0; ( i 
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07~ k ~ + -8Ts ~ s  + - 7 -  -3Ts s inV - -  -~n c~  ' ( 1 . 6 )  

r = ( B 1 - -  n) c o s ?  + ( s - -  sa) s i n ? .  

System (1.1)-(1.4), (1.6) must be solved with allowance for the following initial and 
boundary conditions: 

T i l t =  o = T 2 t t =  0 = T i t =  0 = T~; 

on the heated outside surface of the porous tip OA (region I in Fig. 

on the symmetry axis OE 

i) 

(aT1/as) [r~ = O, (aT4as) Ir~ = 0; 

and on the inside surface of region 1 

- ~i (I - ~,) (arl/an)Ir 5 = 6 (TI I~ -- r~ ); 
6 r~ li~ (:q [ ~ -  r~) + ~'i. 

cv2 (Pv)w 

On the line AD between regions I and 2, we assign conditions of ideal contact 

(1.7) 
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(1.9) 
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TABLE 1 

Cpl, 
T, K1 J / ( k g ' K )  t~, W/(m'K) 

300 
400 
500 
600 

70i ,3 
950,2 
i372 
1804 

O,iOi 
O,l~[ 
O, l i 5  
0,125 

H - ~ ) ~  (1 - -  (p) "-b-F = ~ ir  + T~ It_ = T It+ = T= Ir_; (1.13) 

and on the solid heated outside surface AB 

OT = 
q~) - -  e(Z)~T~ = - ~ ~7s lr2' q~) a r (h~o - -  cp2Tw . 

On the broken line BCD of region 2, we assign conditions of thermal insulation 

(1.14) 

(aT~as) Ir~ = 0 ,  (aT/On)r, = 0 .  ( 1 . 1 5 )  

On the outside and inside surfaces of region i, we have equal pressures in the pores and in 
the surrounding medium: 

p I r l =  p ~ ,  p l r s = p L .  (I.16) 

Boundary condition (1.12) is obtained, with allowance for injection [5], from Eq. 
(I.Ii) and the balance relation for the temperature at the boundary between the body and 
the environment 

a t ,  ro a% - h")~ (i,i  ') ~ T ~ )  (1 - ~) ~, -~  + ~ ~ r~ = (pv)~ (h~ ~) ~ ,  = 

with the condition (~AzaTz/0n) [ << (i - ~)A1(aT1/an)l rs, hi(Z) = c~zTi" We thus use (1.12) 
to assign the relative heating ~ the heat carrier (Tzr r5 - Ti)/(T11 r5 - Ti) until the app- 
roach to the inside surface of region I. This heating is generally determined by the un- 
known quantity 6. 

The heat-transfer coefficient in the expression for convective heat transfer in 
region I is found from the formula [3] 

5 (1) = ~ e x p [ - - O , 3 7 ( p v ) w / ~ q ] ,  ~] = k l /R~ '2 ( t  + cp2Tlw!h~o) 2/a, 

= 3 , 7 5  s i n  ( s /R  0 - -  3 , 5  s i n  s (s/R1). ( 1 . 1 7  ) 

In region 2, a (z) = f(t, s) is given by the analytic expression 

(~(2) = 1,27s/R1 e x p  (s/k4), 0 ~ t < I s e c  

5 (29 ---- k s [k  s - -  e x p  ( 0 , 4 t  q-  t/to) ]s e x p  (x/kl)/flx, t ~ i s e e  �9 (1.18) 

Here t is time; r and z are the transverse and longitudinal components of the cylindrical 
coordinate system; n and s are the components of the natural coordinate systemn; T is 
temperature; p is pressure; p is true density; v is gas filtration velocity in region I; 
(PV)w is the rate of flow of the gas-coolant in the pores; Cp, A, #, and 6 are the heat 
capacity, thermal conductivity, absolute viscosity, and coefficient of heat transfer on the 
inside surface of the shell; ~ is porosity; A v is the bulk coefficient of heat transfer 
between the gas and the skeleton; R is the universal gas constant; A and B are the 
viscous and inertial coefficients in Darcy's law; o is the Stefan-Boltzmann constant; ~(i) 
(i = i, 2) is the emissivity of the surface of the skeleton and graphite; R 1 is the 
external radius of the blunting of the body; LOE is the thickness of the shell; SoB is the 
length of the body along the generatrix; a (i) is the heat-transfer coefficient in the 
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formula for convective heat flux; 7 is the cone angle; qw (i) (i = i, 2) is the convective 

heat flux from the gas phase; Qwl = (qw (I~ - a(1)UTlw4)( 1 - ~), Qw2 = qw (2) - a(e)~Tw 4 is the 
total heat flux to the c-phase on the sphere and on the cone, respectively; h is enthalpy; 
M is the molecular weight of air; Nu, Pe, and Re are the Nusselt, Peclet, and Reynolds 
numbers; the indices e and e0 are affixed to quantities on the external boundary of the 
boundary layer and at the stagnation point, respectively; w and L are indices denoting 

thermodynamic parameters on the external and internal boundaries of the gaseous and c-phas- 
es; superscripts 1 and 2 denote parameters in regions 1 and 2, while subscripts 1 and 2 

denote the skeleton and the gas in region I; the subscript i denotes initial values; V 
denotes bulk values; 0 denotes the end of thermal loading; * denotes characteristic quan- 

tities. 
2. Method of Calculation, Initial Data. The pressure on the heated outside surface 

of the body Pw = P*Pe0 was found from formulas for spheres [!i]: p, = 1 - 1.17 sin2(s/Rl) + 
0.225 sin6(s/Rl), while a constant pressure was assigned for the stagnation point. The 

pressure on the "cold" inside surface of the shell of the sphere was taken in the form PL = 
1.2Pe0, which was sufficient to ensure the necessary coolant flow rate on the thermally 
loaded section from t = 0 to t = t o . 

The quasisteady continuity equation pz~v = -(PV)wrw/rH (the minus sign is due to the 
fact that the normal component of the coordinate n is directed into the body (see Fig. i), 

while the coolant flows in the opposite direction) can be integrated along with Eq. (1.5 , 
nonlinear Darcy's law (1.4), and boundary condition (1.16), and we can find gas velocity 

and pressure across the layer in region i: 

(.omw (~) = { [28 ( ,o~ -  p~) ~:~m~;R + < t ]  ~ - ,~Li/~BDL; (2 Z) 

,o(s, ,~) = {v~ + 2R [,9 (p~)~D + (p,),o E ] / M }  ~ (2.2) 

where 

D (s, 1~) ~ . ,  T~ (r~o/rH) 2 dn; E (s, n)  = A j" ~tT 2 (r,UrH) dn. 
0 0 

B o u n d a r y - v a l u e  p r o b l e m  ( 1 . 2 ) - ( 1 . 3 ) ,  ( 1 . 6 ) - ( 1 . 1 5 )  was s o l v e d  n u m e r i c a l l y  by means o f  
the locally unidimensional splitting method [12]. We used implicit, monotonic, absolutely 
stable difference schemes with a total approximation error O(r + Hli+l - Hli + H2j+I - Hzj) 

(Hli is the variable space step along the coordinate s, while HzO is the same along the 
coordinate n). Here, we automatically chose the time step ~ on the basis of the specified 
accuracy condition and the convergence of the iterations with respect to T I and T 2. If the 
maximum time step is no greater than 0.5, then obtaining a solution on a BESM-6 computer 
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takes 5 min for T 1 (31 x 17) and T 2 (21 x 17). The numerical program was also tested 

against the exact analytical solution [13]. The deviation of the former from the latter on 
the given time interval was no greater than 0.76%. The integral in Eq. (2.2) was found 
from the trapezoid formula. In obtaining the numerical solution, it was necessary to 

condense the difference grid with respect to the space coordinate n near the heated 

boundary in order to avoid computing difficulties connected with the small parameter 
accompanying the highest derivative in Eq. (1.3). 

The thermophysical and structural characteristics of the porous material were taken 

from [14] for a specimen made of sintered powdered stainless steel. Here, T i = 300 K, he0 = 
6.1.106 J/kg, A I = 2.92 + 4.5.10-3TI W/(m.K), PlC~1 = (1252 + 0.544T1) • 103 J/(m3.K), ~ = 

0.34, LoE = 4.10 -3 m, SOB = 0.2725 m, a(1) = 0.7, cp2 = 103 J/(ma.K), A = i00 W/(mZ.K), A = 2.3- 
1011 m -2, B = 5.7.105 m -I, R = 8.31 J/(mole.K), 7 = i0~ RI = 5"I0-2 m, o = 5,7.10 -8 W/(m2.K4), 

Pc0 = 4.105_N/m2, t0 = i0 sec, k I = 1.76, k 2 = 0.7, k a = 2.5, k 4 = 0.18. 
The characteristic values at T, = 103 K in the formula for the viscosity and thermal 

conductivity of air (%2 = ~* ~J-~, ~ = #* ~-T2/T~) were taken from [15]" M = 0.029 kg/mole, 
#, = 4.2.10 -5 kg/(m.sec), A* = 6.7 x i0 -z W/(m.K). The thermophysical parameters and emis- 

sivity of VPP graphite were taken from [16]. 
The thermophysical characteristics of porous cermet AIz0340% + Si3N460 % with ~ = 

0.36, were determined using IT-cp-400 and IT-A-400 units to measure heat capacity and ther- 

mal conductivity [17]. The effective values of these quantities in relation to temperature 

are shown in Table i. The total statistical errors of the parameters are no greater than 
6.9 and 7.7%, respectively, while the density of the porous ceramic is 2072.8 kg/m 3. Fil- 

tration characteristics A and B in nonlinear Darcy's law (1.4) were obtained by the method 
in [18]: A = (1.6 • 0.2).101~ m -2, B = (6.56 • 0.1).103 m -I. The value of Re = (pv)j#,/# was 

varied within the range 1.57-2.37. Since B is small, we used the quantity ~, = A~-I as the 

characteristic dimension in the Reynolds number. 
An analysis of the literature data shows [3, 5, 6, 14, 19] that despite the large 

number of studies devoted to heat transfer in porous media, there is a sizable difference 

in the heat-transfer coefficients A v. Experimental data on intrapore heat transfer was 

generalized in [19] using the simularity equation 

NUv = O , O i 5 P e ~ ,  n 1 = i - -  1.3, 0.5 < Pe  < 80. ( 2 . 3 )  

The quantity X, = B/A was used in [19] in analyses performed on the basis of (2.3). 
Here, B and A are determined empirically for the given specimen. This approach makes it 
possible to account for the relationship between hydraulic resistance and heat transfer in 
the function Nu v = f(Pe). The use of criterional relation (2.3) for a porous ceramic with 
n I = 1.3 gives A v = 1.1.107 W/(m3.K), while for porous steel [14] A v = 3.6.107 W/(m3.K). 

Let isothermal heating of the cermet take place with assigned pressures PL = 1"25"105 
N/m 2 and Pw = lOs N/m2- Then with known A and B and T = 300 K, without allowing for the 

geometry of the shell we can use Eq. (2.1) to find the flow rate (PV)w = 5.03 kg/(mZ.sec). 
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An experiment conducted with these heating conditions yields (pv) w = 5.48 kg/(m2.sec), which 

is no greater than 8%. 
3. Analysis of the Results of the Numerical Solution. First let us examine the 

first shell heating regime, when the leading part of the shell is made of a porous material 

[14] and the conical part is made of stainless steel [6]. Figure 2 shows relations for the 

temperature of the surface of the skeleton T1w and the gas Tzw and the total heat flux to 

the c-phase Qwi, i = i, 2 (solid, dashed, and dot-dash curves, respectively) at the moments 
of time t = 2, 4, and 6 sec for an interphase heat-transfer coefficient A v = 3.6.107 
W/(m3.K). Curves i'-3" correspond to the coolant flow rate (pv) w at the same moments of 

time. It is apparent that an increase in Qwl is accompanied by an increase in the tempera- 
ture of the skeleton and the gas in the permeable tip. Meanwhile, the maximum tip tempera- 

ture TI, = TIw(s,, t) and Qw* are in agreement with the maximum for ~(i) in Eq. (1.17). It 
turns out that the specimen does not fail at the assigned value A v = 3.6.107 W/(m3-K) and 

the pressure PL = l'2Pe0, since the value TI, = 1445 K at t = t o remains lower than the 
melting point of the porous steel (Tmt = 1600 K). The rate of flow of the gas-coolant (see 
Fig. 2) decreases along the surface on certain sections where gas temperature increases, 

due to the increased effect of inertial forces compared to pressure in Darcy's law (1.4). 

The temperature of the surface T w of the conical part of the shell for materials 
based on a ceramic [20], steel [6], and VPP graphite [16] (solid, dashed, and dot-dash 
lines) is shown in Fig. 3 for the moments of time t = ]_, 4, 8 sec (lines 1-3). Since the 
diffusivity of the ceramic is an order lower than the diffusivity of the steel - which is 

in turn an order lower than the diffusivity of the graphite - then the depth to which the 

materials are heated and the temperature of their surfaces decrease and increase, respec- 
tively, in the same order. Since the thermal conductivity of graphite and steel are of the 

same order, the heating of the porous body over a depth of one interval of s from the joint 

to the cone was 338 and 351 K at t = to, respectively, while heat conduction amounted only 
to 305 K for the ceramic due to its low thermal conductivity. It is apparent that the good 

heat-insulating properties of the last-named material make it suitable for use as a 
structural element in heat shields. 

Other conditions being equal, a change in the boundary conditions for 6 to 500 

produces neither a qualitative nor a quantitative change in the solution of the problem. 

Solid lines 1-4 in Fig. 4 show profiles of the temperature of the surface of the 
skeleton TI, corresponding to A v = 3.6.107 , 1.8.107 , 7.2.107 , I0 I~ W/(m3.K) in relation to 

time (the dashed curves represent the profile (pv)w). The dashed and solid curves in Fig. 
5 respectively show the distribution of the temperature of the skeleton and the gas 

depthwise in the section s = s, at t = 2 sec for the indicated HMT regimes. An analysis of 

Figs. 4 and 5 shows that a decrease in the rate of heat transfer between the gas and the 
skeleton (A v = 1.8.107 W/(m3.K) leads to an increase in T I and T 2 near the surface of the 

tip. The fact is that the larger value of T 2 at A v = 1.8.107 W/(m3-K) compared to A v = 
3.6.107 W/(m3.K) leads to a decrease in coolant flow rate (compare curve 2 in Fig. 4), in 

accordance with Eq. (2.1). Thus, coolant with a higher temperature has less of a cooling 
effect on the permeable shell. This conclusion, consistent with the results in [7-9], 
leads to an increase in the heat-transfer coefficient ~(I) from (I~17), and it ultimately 
leads to an increase in convective heat flux qw (I). 

The opposite effect is seen at A v = 7.2.107 W/(m3.K) (curves 3 in Figs. 4 and 5). The 
value A v = 10 I~ W/(m3.K) equalizes the temperature of the gas phase and the c-phase (curve 4 

in Fig. 5), and it ultimately lowers the temperature of the skeleton surface by 800 K. For 
a thicker shell (L = 5.~0 -3 m and A v = 3.6.i07 W/(m3.K) - curves 5 in Fig. 4 and 5), a 

decrease in pressure gradient brings a 33~ reduction in coolant flow rate. This in turn 
leads to an increase in qw (I) and to destruction of the skeleton for t = t o . 

It is necessary to say that for some HMT regimes for the balance boundary conditions 

(1.8), (1.9) T2w > T1w (Fig. 5, curves 1-3, 5). However, T 1 becomes greater than T 2 with 
increasing depth. This has to do with the fact that gas flow rate is small for such HMT 

regimes at t = 2 sec (see Fig. 4). As a result, air temperature increases sharply both on 
the surface and in a certain region around it due to heat exchange with the environment and 

the skeleton and the fact that the diffusivity of air is greater than that of the skeleton 
(steel). Then, as the heat-transfer process becomes established, the c-phase is heated 
more rapidly - since the thermal conductivity of the porous steel is two orders greater 
than the thermal conductivity of the gas. 

Curves 6 in Figs. 4 and 5 correspond to the regime A v = 3.6.107 W/(m3.K) and the con- 
dition of thermal insulation for the gas (aT2/an)t rl = O. In this case, in accordance with 
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the boundary condition for T1w (1.8), all of the convective heat flux qw (I) falls on the sur- 

face of the skeleton. Since ~ = 0.34, the surface of the c-phase is always heated at a 
rate which is 30% greater, and it reaches Tmt at t > 2 sec. 

In the case of low porosity (~ = 0.05), balance boundary conditions (1.8)-(1.9) 
nearly coincide with the conditions (aT2/an)J = 0 [8], since in this case (A2~aT2/an)l rl / 
[%1(i - ~)aTl/an]l rl << i and all of the heat ~ux from the gas phase reaches the surface of 
the framework. Thus, the condition (aT2/an)i r I = O can have physical significance only at 

< 0.i. However, little use is made of low-porosity composites in heat engineering [6]. 
In addition, it was shown in [I0] that the heat-insulation conditions for the gas are not 
invariant to the thermophysical properties of the two-temperature gas-permeable medium. 

Let us now examine a second composite heating regime in which the leading part of the 
body is a porous ceramic and the conical part is impermeable steel (curves 7 in Fig. 4). 
In this regime, with Pe0 = 1"8"105 N/m2, A = 1.6"101~ m -2, B = 6.56.103 m -I, A v = 1.1.107 W/ 

(m3.K), Lo~ = 5.9-10 -3 m, inertial forces and viscosity are small compared to the pressure 
gradient. The latter quantity also ultimately determines the flow rate of the coolant gas 
in the porous ceramic (see dashed line 7 in Fig. 4 for (pv)w). As a result, the temper- 
ature of the gas-coolant increases slightly (to 325 K), while the temperature of the 
surface of the c-phase reaches steady-state values in tenths of a second (solid line in 
Fig. 4). Due to the low thermal conductivity of the skeleton (see Table I) and the high 
gas velocity, the temperature of the porous part in the region of the joint with the cone 
remains at the initial value up to t = t o . This fact results in a substantial flow of heat 
from the conical part of the shell. Thus, at the moment t = to, the temperature of the 
surface of the cone about its cirumference is 200-300 K lower than in the first heating 
regime (in which the leading part is made of porous steel). 

The values of T1w and Tzw depend to a significant extent on the bulk heat-transfer 
coefficient A v. To ensure a reduction in the surface temperature of porous bodies, it is 
necessary to use materials having structural characteristics that will maximize the value 

of A v . 
The results of our numerical experiment showed the following: I) it is necessary to 

allow for the effect of two temperatures when mathematically modeling heat and mass 
transfer in porous steel and permeable cermets, since assuming that the porous medium has 
only one temperature (A v * ~) significantly lowers the temperature of the skeleton; 2) it 
is best to use a material based on a cermet for the heat shield, since, other conditions 
being equal, there is almost no depthwise heating of the specimen due to the low thermal 

conductivity of the ceramic. 
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REFLECTION OF A SHOCK WAVE FROM THE FREE SURFACE OF AN ELASTOPLASTIC BODY 

V. A. Baskakov and A. V. Bobryashov UDC 539.3:534~i 

The present article examines a model of a macroscopically isotropic ideal elastoplas- 
tic body with small trains within the framework of the classical dynamic theory of 
plasticity. The behavior of the body is described by the Prandtl-Reuss equations~ the von 
Mises plasticity condition, and the associated flow law [i]. 

Our goal is to theoretically study a two-dimensional model problem concerning the 
propagation and reflection of a shock wave of finite length from a free boundary. The time 
of impact (contact time) is considered to be finite in regard to the generation of the 
wave. This time reaches -i0 -6 sec for a broad range of metals, so that the length of the 
wave may be several millimeters - in which case it must be taken into account. Here, we 
will examine weak shock waves, the pressure at the front being of the order of 1 GPa. The 
waves do not produce phase changes in the substance. 

Thus, we will be examining questions relating to a single local reflection of loading 
and unloading waves - a case corresponding to the actual shock loading of a body. Problems 
that were similarly formulated and were solved by similar approaches were addressed in [2- 
5]. 

Shock-wave profiles in metals have been well studied both theoretically and experi- 
mentally [6, 7] and constitute an elastic precursor which is followed by a slower-moving 
plastic front. The shock wave splits in two, with the formation of a two-front wave 
configuration. Here, in actual physical processes involving high-speed impact, the 
amplitude (intensity) of the shock wave initially rapidly increases. It then decreases 
monotonically to zero - which corresponds to unloading. This circumstance makes it very 
difficult to construct the unloading wave [8]. As a result, we will henceforth assume that 
unloading occurs in the form of a certain stepped wave which moves with the speed of the 
precursor. 

Since the stresses and displacement rates change sign in the unloading wave (to ten- 
sion), we can say that the front of this wave, having "caught up with" the front of the 
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